
A Gentle* Introduction to
Reinforcement Learning

Annik Carson
ISICNI2022

*ideally

Learning from Trial and Error

https://worldle.teuteuf.fr/

Tutorial Goals
1. Reinforcement learning is learning from trial-and-error

2. Game Architect or Game Player: What Goes Into a RL problem
- Markov Decision Processes
- Environments
- Agents

3. (Some) Approaches to Solving RL Problems
- Types of agents
- Tabular Solutions
- Approximate Solutions (just some hints)

What is Reinforcement Learning?

What is RL Used For?

We All Have This Problem
“What should I do?”

How Does RL Relate to Neuroscience?

Classical conditioning is the process of learning to predict the world around you

Ivan Pavlov

How Does RL Relate to Neuroscience?

Operant conditioning is the process of learning how to control behaviour for the best outcome

BF Skinner

Reinforcement Learning = Optimizing Behaviour

● How should agents act optimally?
○ Optimality ~ maximizing cumulative reward

● What information is available to learn with?
○ Trial and error interaction with the world

● How should agents act optimally?
○ Optimality ~ maximizing cumulative reward

● What information is available to learn with?
○ Trial and error interaction with the world

David Silver, 2015

Reinforcement Learning = Optimizing Behaviour

How do we represent these tasks
and their solutions?

Markov Decision Processes
● RL problems are formalized as Markov Decision Processes

○ The Markov property states that
 the future is independent of the past given the present:

Markov Decision Processes
● RL problems are formalized as Markov Decision Processes

○ The Markov property states that
 the future is independent of the past given the present:

● MDPs are defined by the following variables:
○ , a finite set of states

○ , a finite set of actions

○ , state transition probabilities

○ , a reward function: (state, action, next state) → scalar value

○ , a discount factor (weighing importance of immediate vs future reward)

Markov Decision Processes
● RL problems are formalized as Markov Decision Processes

○ The Markov property states that
 the future is independent of the past given the present:

● MDPs are defined by the following variables:
○ , a finite set of states

○ , a finite set of actions

○ , state transition probabilities

○ , a reward function: (state, action, next state) → scalar value

○ , a discount factor (weighing importance of immediate vs future reward)

Exercise 1

An environment is a set of states and

the rules that specify moves between them

States

State Transitions

Rewards

Actions & Transitions

Chill

Study

Markov Decision Processes
● , a finite set of states

● , a finite set of actions

● , state transition probabilities (one matrix for each action)

● , a reward function: (state, action, next state) → scalar value

● , a discount factor (weighing importance of immediate vs future reward)

Study, Chill

Returns
● The return (aka Gain, hence Gt) is the total discounted reward from step t:

● Why discount?

○ controls our ‘temporal horizon’:
■ = 0: the only reward we care about is NOW (most ‘nearsighted’)
■ = 1: all rewards (to infinity) have equal value (most ‘farsighted’)

○ Rewards in the future may not be as valuable as rewards now

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

A policy (π) is a distribution over actions given states

BREAK

How do we represent these tasks
and their solutions?

Specifying the Environment

An environment is a set of states and

the rules that specify moves between them

Exercise 2

Environment
State Ex. (1,1), (5,5)

Action Ex. “Down”

Reward Ex. -1 or +10

Environment: Rewards
Reward function R(state)

- R(1,1) = -1

- R(5,5) = +10

R(s) for this environment can be
represented by a vector:

Q: How long is the vector R(s)?

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

-1 -1 -1 -1 … +10

Environment: State Transition Probability
Transition Function P(s, s’, a):

A rule for what moves are allowed

→ Can be represented by a 3D tensor

Down
Up

Left
Right

S1 S2 S3 S4 S5 S6 . . . S25

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Environment: State Transition Probability
Transition Function P(s, s’, a):

A rule for what moves are allowed

→ Can be represented by a 3D tensor 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

 Down
 Up
 Left
Right

S1
S2
 .
 .
 .
S25

S1 S2 S3 . . . S25

0 1 0 . . . 0
0 0 1 . . . 0

0 0 0 . . . 0C
u

rr
en

t
st

at
e

(s
)

Next state (s’)

Environment: State Transition Probability
Transition Function P(s, s’, a):

A rule for what moves are allowed

For state 1 (i.e. (1,1)):

Down
Up

Left
Right

S1 S2 S3 S4 S5 S6 . . . S25

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Environment: State Transition Probability
A different transition function:

Environment has wrapping edges
 ex. pacman

For state 1 (i.e. (1,1)):

Down
Up

Left
Right

S1 S2 S3 S4 S5 S6 . . . S25

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

There should be a 1 in the matrix at position [1, 20]
i.e. for action up the probability of transitioning to
state 21 is 1

A different transition function:

 Environment has a strong wind blowing
 to the right

For state 1 (i.e. (1,1)):

Environment: State Transition Probability

Down
Up

Left
Right

S1 S2 S3 S4 S5 S6 S7 S8 . . . S25

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

The probability of leaving a state = 1
 → Sum of values along the row = 1

● , a finite set of states

● , a finite set of actions

● , state transition probabilities (one matrix for each action)

● , a reward function: (state, action, next state) → scalar value

● , a discount factor (weighing importance of immediate vs future reward)

Markov Decision Processes

{Up, Down, Left, Right}

{(0,0), (0,1), (0,2), … (5,5)}

What is Reinforcement Learning (RL)?

● How should agents act optimally?
○ Optimality ~ maximizing cumulative reward

● What information is available to learn with?
○ Trial and error interaction with the world

● So far, we have just set up a formalized task
○ How do we go about solving it?

BREAK

How do we represent these tasks
and their solutions?

Specifying the Agent

An agent is made up of one or more of these pieces:

What’s In An Agent?

An agent is made up of one or more of these pieces:

● Model
○ A representation of the environment dynamics

What’s In An Agent?

Model T ≈ Pa
ss’

s

s’
a

An agent is made up of one or more of these pieces:

● Model
○ A representation of the environment dynamics

● Value Function
○ An estimate how much reward is expected

over time for each state and/or action

What’s In An Agent?
Value ≈ E(Gt)

s

s’
a

Model T ≈ Pa
ss’

An agent is made up of one or more of these pieces:

● Model
○ A representation of the environment dynamics

● Value Function
○ An estimate how much reward is expected

over time for each state and/or action

● Policy
○ A function which maps states onto actions
○ A (conditional) probability distribution

■ gives the probability of selecting
each action given current state

What’s In An Agent?

Policy π

 P
ro

ba
bi

lit
y

of
 A

ct
io

n
0

 1

 N E W Ss

s’
a

Value ≈ E(Gt)

Model T ≈ Pa
ss’

What’s In An Agent?

David Silver, 2015

An agent is made up of one or more of these pieces:

● Model
○ A representation of the environment dynamics

● Value Function
○ An estimate how much reward is expected

over time for each state and/or action

● Policy
○ A function which maps states onto actions
○ A (conditional) probability distribution

■ gives the probability of selecting
each action given current state

How to Learn Intelligent Behaviour?

● Trial and error learning

45

PolicyValueModel

● Traditional RL categorized as
○ Model-based (~ goal directed)
○ Model-free (~ habitual)

How to Learn Intelligent Behaviour?

● Traditional RL categorized as
○ Model-based (~ goal directed)
○ Model-free (~ habitual)

● Trial and error learning

46

PolicyValueModel

How to Learn Intelligent Behaviour?

● Traditional RL categorized as
○ Model-based (~ goal directed)
○ Model-free (~ habitual)

● Trial and error learning

47

PolicyValueModel

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

Recall:

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

A policy (π) is a distribution over actions given states

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

A policy (π) is a distribution over actions given states

Ex. Greedy policy: Ex. ε-Greedy policy:

How to Compute Value of Current State?
● Brute force

○ Compute value of all possible traces and take
weighted sum

● Brute force
○ Compute value of all possible traces and take

weighted sum

● Sampling
○ Pick traces randomly and take empirical

average over sampled traces

How to Compute Value of Current State?

How to Compute Value of Current State?
● Brute force

○ Compute value of all possible traces and take
weighted sum

● Sampling
○ Pick traces randomly and take empirical

average over sampled traces

● Bootstrapping
○ Estimate from values of successive states

Using Value to Construct Policy
● How do we judge value?

○ The state-value function vπ(s) is the expected return
starting from state s and following policy π thereafter

○ The state-action-value function qπ(s,a) is the
expected return starting from state s, taking
action a, then following policy π thereafter

● Some policies based on these value functions:
greedy:

𝜀-greedy:

BREAK

Solution Methods
● Tabular Methods

○ Dynamic Programming
○ Monte Carlo
○ Temporal Difference
○ N-step TD bootstrapping

● Approximate solution methods
○ Deep Q Network (DQN)
○ Policy-gradient methods
○ Actor-Critic

56

PolicyValueModel

Learning Value
Error – how much to update by

Old ValueNew (Updated)
Value

Learning Rate – how much error contributes to new value

Learning Value: Monte Carlo
Error – how much to update by

Learning Rate – how much error contributes to new value Old ValueNew (Updated)
Value

Empirical return Gt (i.e. sampled)

Learning Value: Monte Carlo

Learn directly from episodes of experience — upon episode completion, update
the value of all states (or state-actions) visited [sampling]

• General idea: run some episodes and estimate value of a state as
empirical mean of the return starting from that state

Incremental update:

Learning Value: Monte Carlo
• Evaluation: for each episode, update the estimate of the value

• Improvement: update policy to be -greedy w.r.t value function

Learning Value: Monte Carlo
● Run through an episode making ε-greedy choices, record each (s, a, r)

○ At the end, compute V(s) or Q(s,a) explicitly

● Repeat, each time average the values of the V(s)/Q(s,a) we have so far
○ This way, we know which state/action gave the highest value of anything we encountered

PROS CONS

Does not require knowledge/model of
environment (learns from interaction)

Requires episodic (terminating)
environments

Can focus on one region of interest
without having to evaluate the rest of
state space

Requires complete episodes, can’t
bootstrap (can’t estimate values of
successive states)

Return only known at the end of episode,
so very slow for long episodes

Exercise 3

Learning Value: Temporal Difference
Error – how much to update by

Learning Rate – how much error contributes to new value

Old ValueNew (Updated)
Value

Estimate of return Gt

Learning Value: Temporal Difference
Temporal difference (TD) learning combines efficient value estimation by bootstrapping
along with sampling from episodes.

Learning Value: Temporal Difference
Temporal difference (TD) learning combines efficient value estimation by bootstrapping
along with sampling from episodes.

● General idea: Update your estimate of currnet value using your estimate of the
next value plus some empirical evidence (observed reward)

Incremental update:

Learning Value: Temporal Difference
• Evaluation: for each episode, update the estimate of the value

• Improvement: update policy to be -greedy w.r.t value function*

Example: Driving Home

Changes Recommended by MC Changes Recommended by TD

Temporal Difference vs Monte Carlo
Goal: learn vπ online from experiences under policy π

Incremental MC Simplest TD

Update V(st) toward actual return Gt Update V(st) toward estimated
return Rt+1 + 𝛾 V(st+1)

V(st) ← V(st) + ɑ (Gt - V(st)) V(st) ← V(st) + ɑ (Rt+1 + 𝛾 V(st+1) - V(st))

Temporal Difference vs Monte Carlo
Goal: learn vπ online from experiences under policy π

In Between MC & TD: TD-lambda

How Do All These Relate?

Sutton & Barto

On/Off Policy Learning
- Generate your target from the same policy you used to select actions

- ON policy

- Generate your target from a different policy than the one you used to
select actions

- Off policy

Action Selection Policy
(Behaviour Policy)

Target Generation Policy

On Policy - greedy - greedy

Off Policy - greedy Greedy - no chance of
random action selection

Exercise 4

Learning Value: Temporal Difference
Error – how much to update by

Learning Rate – how much error contributes to new value

Old ValueNew (Updated)
Value

Estimate of return Gt

On-Policy TD Learning: SARSA

● The agent collects info over two steps: State/Action/Reward/Next State/Next Action

● Agent uses an -greedy policy for action selection in each step

● Update state (state-action) values by this temporal difference error which takes into
account the states/actions sampled in step t and step t+1

SARSA (TD Method)

Off-Policy TD Learning: Q Learning

● The agent has two policies — the behavior policy (e.g., -greedy), and the
optimized policy (e.g., greedy)

● The next action is chosen using the behavior policy, but Q-values are updated using
the optimized policy.

● This allows us to optimize a greedy policy (as in DP methods), but we don’t have to
worry about exploration (due to -greedy behavior policy)

Q-Learning (TD Method)

SARSA vs Q-Learning

Action Selection Policy
(Behaviour Policy)

Target Generation Policy

On Policy - greedy - greedy

Off Policy - greedy Greedy - no chance of
random action selection

Approximate Solution Methods

● So far we have just looked at tabular solution methods
 What if your state space is too large for tables, or continuous?

● Use function approximation
○ eg. linear combination of features, neural network, etc.

Approximate Solution Methods: Neural Networks

Approximate Solution Methods: Neural Networks

Mnih et al. (2015) Nature

“DQN”

An Example We Won’t Get Into
The Actor Critic Network

- Learn policy and value with same network
-

Actor Critic

Actor Loss Critic Loss

An Example We Won’t Get Into

Zhao et al. (2018) Cog. Computation

More Materials on RL Fundamentals

David SilverRich Sutton

Arthur Juliani @ Medium

Algorithms for RL - Csaba Szepesvari

http://www.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www.incompleteideas.net/book/bookdraft2017nov5.pdf
http://www.incompleteideas.net/book/bookdraft2017nov5.pdf
https://medium.com/@awjuliani
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs-lecture.pdf

