A Gentle* Introduction to Reinforcement Learning Annik Carson

Learning from Trial and Error

SURINAME	11,909km		40%				
RUSSIA	3,981km		80%				
EGYPT	2,991km		85%				
Country, territory							
😚 GUESS							

Tutorial Goals

- 1. Reinforcement learning **is** learning from trial-and-error
- 2. Game Architect or Game Player: What Goes Into a RL problem
 - Markov Decision Processes
 - Environments
 - Agents
- 3. (Some) Approaches to Solving RL Problems
 - Types of agents
 - Tabular Solutions
 - Approximate Solutions (just some hints)

What is Reinforcement Learning?

What is **RL Used For?**

We All Have This Problem

"What should I do?"

gane Long monevsideoflife.com

How Does RL Relate to Neuroscience?

Ivan Pavlov

Classical conditioning is the process of learning to **predict** the world around you

How Does RL Relate to Neuroscience?

BF Skinner

Operant conditioning is the process of learning how to **control** behaviour for the best outcome

Reinforcement Learning = Optimizing Behaviour

- How should agents act **optimally**?
 - Optimality ~ maximizing cumulative reward
- What information is available to learn with?
 - \circ Trial and error interaction with the world

Reinforcement Learning = Optimizing Behaviour

How do we represent these <u>tasks</u> and their solutions?

- RL problems are formalized as **Markov Decision Processes**
 - The Markov property states that

the future is independent of the past given the present:

 $\Pr[s_{t+1}|s_1, ..., s_t] = \Pr[s_{t+1}|s_t]$

- RL problems are formalized as **Markov Decision Processes**
 - The Markov property states that the future is independent of the past given the present:

 $\Pr[s_{t+1}|s_1, ..., s_t] = \Pr[s_{t+1}|s_t]$

- MDPs are defined by the following variables:
 - $\circ~\mathcal{S}_{\prime}$ a finite set of states
 - $\circ \, \mathcal{A}$, a finite set of actions
 - $\circ ~ \mathcal{P}$, state transition probabilities

$$\mathcal{P}^{a}_{ss'} = \Pr[S_{t+1} = s' | S_t = s, A_t = a]$$

 $\circ \mathcal{R}$, a reward function: (state, action, next state) \rightarrow scalar value

$$\mathcal{R}^{a}_{ss'} = \mathbb{E}[r_{t+1}|S_t = s, S_{t+1} = s', A_t = a]$$

 $\circ \gamma \in [0,1]$, a discount factor (weighing importance of immediate vs future reward)

- RL problems are formalized as **Markov Decision Processes**
 - The Markov property states that the future is independent of the past given the present:

 $\Pr[s_{t+1}|s_1, ..., s_t] = \Pr[s_{t+1}|s_t]$

- MDPs are defined by the following variables:
 - $\circ~\mathcal{S}_{\prime}$ a finite set of states
 - $\circ \, \mathcal{A}$, a finite set of actions
 - $\circ ~ \mathcal{P}$, state transition probabilities

$$\mathcal{P}_{ss'}^{a} = \Pr[S_{t+1} = s' | S_t = s, A_t = a]$$

 $\circ \mathcal{R}_{i}$, a reward function: (state, action, next state) \rightarrow scalar value $\mathcal{R}^{a} = \mathbb{E} \begin{bmatrix} m & m & S \\ m & m & S \end{bmatrix} = c \begin{bmatrix} c' & A & m \\ c & m & m \end{bmatrix}$

$$\mathcal{R}^{a}_{ss'} = \mathbb{E}\left[r_{t+1} | S_t = s, S_{t+1} = s', A_t = a\right]$$

 $\circ \gamma \in [0,1]$, a discount factor (weighing importance of immediate vs future reward)

$$\mathbb{X} = \{x_1, x_2, x_3 \dots x_n\}$$

$$\mathbb{P} = \{p_1, p_2, p_3 \dots p_n\}$$

$$\mathbb{E} = p_1 x_1 + p_2 x_2 + \ldots + p_n x_n$$

An environment is a **set of states** and

the **rules** that specify moves between them

State Transitions

Rewards

$$\mathcal{R}^{a}_{ss'} = \mathbb{E} \begin{bmatrix} r_{t+1} | S_t = s, S_{t+1} = s', A_t = a \end{bmatrix}$$

$$\stackrel{\text{(lass)}}{\underset{\left[-2 \quad -2 \quad -2 \quad +10 \quad +1 \quad -1 \quad 0 \end{bmatrix}}$$

Pub

FB

Sleep

 $ullet \, {\cal P}_{\sf r}$ state transition probabilities (one matrix for each action)

• \mathcal{R}_{r} , a reward function: (state, action, next state) ightarrow scalar value

_

ullet $\gamma \in [0,1]$, a discount factor (weighing importance of immediate vs future reward)

Returns

• The **return** (aka Gain, hence G_t) is the total discounted reward from step t:

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- Why discount?
 - Rewards in the future may not be as valuable as rewards now

$\circ \quad \gamma \in [0,1]$ controls our 'temporal horizon':

- γ = 0: the only reward we care about is NOW (most 'nearsighted')
- γ = 1: all rewards (to infinity) have equal value (most 'farsighted')

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

$$v(s) = \mathbb{E}[G_t | S_t = s]$$
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$\mathbb{X} = \{x_1, x_2, x_3 \dots x_n\}$$
$$\mathbb{P} = \{p_1, p_2, p_3 \dots p_n\}$$

$$\mathbb{E} = p_1 x_1 + p_2 x_2 + \ldots + p_n x_n$$

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

$$v(s) = \mathbb{E}[G_t | S_t = s]$$
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

A policy (π) is a **distribution over actions given states** $\pi[a|s] = \Pr[A_t = a|S_t = s]$

BREAK

How do we represent these <u>tasks</u> and their solutions?

Specifying the Environment

An environment is a set of states and

the **rules** that specify moves between them

Exercise 2

Environment

State Ex. (1,1), (5,5)

Action Ex. "Down"

Reward Ex. -1 or +10

Environment: Rewards

Reward function R(state)

- R(1,1) = -1
- R(5,5) = +10

R(s) for this environment can be represented by a vector:

-1 -1 -1 -1 ... +10

Q: How long is the vector R(s)?

Transition Function P(s, s', a): A rule for what moves are allowed

 \rightarrow Can be represented by a 3D tensor

4

3	I	4	T
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

tensor of dimensions [6,4]

(matrix 6 by 4)

tensor of dimensions [4,4,2]

tensor of dimensions [6] (vector of dimension 6)

Transition Function P(s, s', a): A rule for what moves are allowed

 \rightarrow Can be represented by a 3D tensor

Transition Function P(s, s', a): A rule for what moves are allowed

For state 1 (i.e. (1,1)):

	S1	S2 3	S3	S4	S5	S6	S25
Down	[0.,	0.,	0.	, 0.,	0.,	1.,	,, 0.]
Up	[1.,	0.,	0.	, 0.,	0.,	0.,	,, 0.]
Left	[1.,	0.,	0.	, 0.,	0.,	0.,	,, 0.]
Right	[0.,	1.,	0.	, 0.,	0.,	0.,	,, 0.]

A different transition function:

Environment has wrapping edges ex. pacman

For state 1 (i.e. (1,1)):

state 21 is 1

	S1 3	S2 .	53 5	54	S5	S6	S	25
Down	[0.,	0.,	0.,	0.,	0.,	1.,	,	0.]
Up	[0.,	0.,	0.,	0.,	0.,	0.,	,	0.]
Left	[0.,	0.,	0.,	0.,	(1),	0.,	1	0.]
Right	[0.,	1.,	0.,	0.,	0.,	0.,	,	0.]
Т	here sh	ould be	e a 1 in	the ma	atrix at	positic	n [1, 20]
i.	e. for ac	ction up	the pr	obabili	ty of tra	ansitior	ning to	

A different transition function:

Environment has a strong wind blowing to the right

For state 1 (i.e. (1,1)):

	S1	S2	S3	S4	S 5		S6	S7	S8		525
Down	[0.,	0.,	0.,	0.,	0.	,	0.5,	0.5,	0.,	,	0.]
Up	[0.5,	0.,	0.,	0.,	0.	,	0.,	0.,	0.,	,	0.]
Left	[1. ,	0.,	0.,	0.,	0.	,	0.,	0.,	0.,	,	0.]
Right	[0.,	0.3,	0.6,	0.1,	0.	,	0.,	0.,	0.,	,	0.]

The probability of leaving a state = $1 \rightarrow$ Sum of values along the row = 1

- *S*, a finite set of states {(0,0), (0,1), (0,2), ... (5,5)}
- ullet ${\cal A}$, a finite set of actions

{Up, Down, Left, Right}

ullet $\mathcal{P}_{ extsf{r}}$ state transition probabilities (one matrix for each action)

ullet $\gamma \in [0,1]$, a discount factor (weighing importance of immediate vs future reward)

What is Reinforcement Learning (RL)?

- How should agents act **optimally**?
 - Optimality ~ maximizing cumulative reward
- What information is available to learn with?
 Trial and error interaction with the world

- So far, we have just set up a formalized task
 - How do we go about solving it?

BREAK

How do we represent these tasks and their <u>solutions</u>?

Specifying the Agent

An agent is made up of one or more of these pieces:

An agent is made up of one or more of these pieces:

- Model
 - A representation of the environment dynamics

An agent is made up of one or more of these pieces:

- Model
 - A representation of the environment dynamics
- Value Function
 - An estimate how much reward is expected over time for each state and/or action

An agent is made up of one or more of these pieces:

- Model
 - A representation of the environment dynamics
- Value Function
 - An estimate how much reward is expected over time for each state and/or action

Policy

- A function which maps states onto actions
- A (conditional) probability distribution
 - gives the probability of selecting each action given current state

An agent is made up of one or more of these pieces:

- Model
 - A representation of the environment dynamics
- Value Function
 - An estimate how much reward is expected over time for each state and/or action

Policy

- \circ A function which maps states onto actions
- A (conditional) probability distribution
 - gives the probability of selecting each action given current state

How to Learn Intelligent Behaviour?

• Trial and error learning

- Traditional RL categorized as
 - Model-based (~ goal directed)
 - Model-free (~ habitual)

How to Learn Intelligent Behaviour?

- Trial and error learning
- Traditional RL categorized as
 - Model-based (~ goal directed)
 - Model-free (~ habitual)

How to Learn Intelligent Behaviour?

- Trial and error learning
- Traditional RL categorized as
 - Model-based (~ goal directed)
 - Model-free (~ habitual)

Value & Policy Functions

The value of a state s is the **expected long term reward that can be achieved**

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

Recall:
$$\mathbb{E} = p_1 x_1 + p_2 x_2 + \ldots + p_n x_n$$

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

A policy (π) is a **distribution over actions given states**

$$\pi[a|s] = \Pr[A_t = a|S_t = s]$$

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

A policy (π) is a **distribution over actions given states**

$$\pi[a|s] = \Pr[A_t = a|S_t = s]$$

Ex. Greedy policy:

Ex. ε-Greedy policy:

$$\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} q_{\pi}(s, a) \qquad \pi[a|s] = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

How to Compute Value of Current State?

- Brute force
 - Compute value of all possible traces and take weighted sum

$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s] = \sum_{\tau \in \text{MDP}} p(\tau | \pi, S_t = s) G(\tau)$$

How to Compute Value of Current State?

- Brute force
 - Compute value of all possible traces and take weighted sum

$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s] = \sum_{\tau \in \text{MDP}} p(\tau | \pi, S_t = s) G(\tau)$$

- Sampling
 - Pick traces randomly and take empirical average over sampled traces

$$v_{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} G(\tau_i)$$

How to Compute Value of Current State?

- Brute force
 - Compute value of all possible traces and take weighted sum

$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s] = \sum_{\tau \in \text{MDP}} p(\tau | \pi, S_t = s) G(\tau)$$

- Sampling
 - Pick traces randomly and take empirical average over sampled traces

$$v_{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} G(\tau_i)$$

- Bootstrapping
 - Estimate from values of successive states

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$

Using Value to Construct Policy

- How do we judge **value**?
 - The **state-value function** $v_{\pi}(s)$ is the expected return starting from state s and <u>following policy</u> π thereafter
 - The **state-action-value function** $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, then <u>following policy</u> π thereafter

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

• Some **policies** based on these value functions:

greedy:
$$\pi(s) = \underset{a \in \mathcal{A}}{\arg \max} q_{\pi}(s, a)$$

 ε -greedy: $\pi[a|s] = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a = \underset{a \in \mathcal{A}}{\arg \max} q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$

BREAK

Solution Methods

- Tabular Methods
 - Dynamic Programming
 - Monte Carlo
 - Temporal Difference
 - N-step TD bootstrapping
- Approximate solution methods
 - Deep Q Network (DQN)
 - Policy-gradient methods
 - Actor-Critic

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$ Learning Value Error – how much to update by $V_{\pi}(s_t) \leftarrow V_{\pi}(s_t) + \alpha (\mathbf{TARGET} - V_{\pi}(s_t))$ New (Updated) Old Value Learning Rate – how much error contributes to new value Value

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$

Learn directly from episodes of experience — upon episode completion, update the value of all states (or state-actions) visited [sampling]

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_{t+T}$$

• **General idea:** run some episodes and estimate value of a state as empirical mean of the return starting from that state

$$v_{\pi}(s) \approx V(s) = \frac{1}{N} \sum_{i=1}^{N} G_t(\tau_i), \text{ for } S_t = s$$

Incremental update: $V_{\pi}(s_t) \leftarrow V_{\pi}(s_t) + \alpha (G_t - V_{\pi}(s_t))$

• Evaluation: for each episode, update the estimate of the value

$$V_{\pi}(s_t) \leftarrow V_{\pi}(s_t) + \alpha \big(G_t - V_{\pi}(s_t) \big)$$

$$Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) + \alpha \big(G_t - Q_{\pi}(s_t, a_t)\big)$$

• Improvement: update policy to be ϵ -greedy w.r.t value function

$$\pi[a|s] = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a = \operatorname*{arg\,max}_{a \in \mathcal{A}} q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$

- Run through an episode making ε-greedy choices, record each (s, a, r)
 - \circ $\;$ At the end, compute V(s) or Q(s,a) explicitly $\;$
- Repeat, each time average the values of the V(s)/Q(s,a) we have so far
 - This way, we know which state/action gave the highest value of anything we encountered

PROS	CONS
Does not require knowledge/model of environment (learns from interaction)	Requires episodic (terminating) environments
Can focus on one region of interest without having to evaluate the rest of state space	Requires complete episodes, can't bootstrap (can't estimate values of successive states)
	Return only known at the end of episode, so very slow for long episodes

Exercise 3

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$

Temporal difference (TD) learning combines efficient value estimation by bootstrapping along with sampling from episodes.

$$v(s) = \mathbb{E} [G_t | S_t = s] = \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s] = \mathbb{E} [R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + ...) | S_t = s] = \mathbb{E} [R_{t+1} + \gamma G_{t+1} | S_t = s] = \mathbb{E} [R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

Temporal difference (TD) learning combines efficient value estimation by bootstrapping along with sampling from episodes.

$$v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

• **General idea:** Update your estimate of currnet value using your estimate of the next value plus some empirical evidence (observed reward)

Incremental update: $V_{\pi}(s_t) \leftarrow V_{\pi}(s_t) + \alpha (r_t + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t))$ $Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) + \alpha (r_t + \gamma Q_{\pi}(s_{t+1}, a_{t+1}) - Q_{\pi}(s_t, a_t))$

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$

• Evaluation: for each episode, update the estimate of the value

$$V_{\pi}(s_{t}) \leftarrow V_{\pi}(s_{t}) + \alpha \left(r_{t} + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_{t}) \right)$$
$$Q_{\pi}(s_{t}, a_{t}) \leftarrow Q_{\pi}(s_{t}, a_{t}) + \alpha \left(r_{t} + \gamma Q_{\pi}(s_{t+1}, a_{t+1}) - Q_{\pi}(s_{t}, a_{t}) \right)$$

• Improvement: update policy to be ϵ -greedy w.r.t value function*

$$\pi[a|s] = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a = \underset{a \in \mathcal{A}}{\arg \max} \ q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

Example: Driving Home

	Elapsed Time	Predicted	Predicted
State	(minutes)	Time to Go	Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Temporal Difference vs Monte Carlo

Goal: learn v_π online from experiences under policy π

Incremental MC	<u>Simplest TD</u>
Update V(s _t) toward actual return G _t	Update V(s _t) toward estimated return R _{t+1} + γ V(s _{t+1})
$V(s_t) \leftarrow V(s_t) + \alpha (G_t - V(s_t))$	$V(s_t) \leftarrow V(s_t) + \alpha \left(R_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right)$

Temporal Difference vs Monte Carlo

Goal: learn v $_{\pi}$ online from experiences under policy π

In Between MC & TD: TD-lambda

Let TD target look *n* steps into the future

Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1 \quad (TD) \quad G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$

$$\vdots \qquad \vdots$$

$$n = \infty \quad (MC) \quad G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

How Do All These Relate?

Sutton & Barto

On/Off Policy Learning

- Generate your target from the **same** policy you used to select actions
 - **ON** policy
- Generate your target from a **different** policy than the one you used to select actions
 - **Off** policy

	Action Selection Policy (Behaviour Policy)	Target Generation Policy
On Policy	ϵ - greedy	ϵ - greedy
Off Policy	ϵ - greedy	Greedy - no chance of random action selection
Exercise 4

Learning Value: Temporal Difference

On-Policy TD Learning: SARSA

- The agent collects info over two steps: State/Action/Reward/Next State/Next Action
- ullet Agent uses an ϵ -greedy policy for action selection in each step
- Update state (state-action) values by this temporal difference error which takes into account the states/actions sampled in step t and step t+1

$$Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) + \alpha (r_t + \gamma Q_{\pi}(s_{t+1}, a_{t+1}) - Q_{\pi}(s_t, a_t))$$

SARSA (TD Method)

$$Q(S, A) \leftarrow Q(S, A) + \alpha (R + \gamma Q(S', A') - Q(S, A))$$

Initialize Q(s, a) arbitrarily Repeat (for each episode): Initialize s Choose a from s using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Take action a, observe r, s'Choose a' from s' using policy derived from Q (e.g., ε -greedy) $Q(s,a) \leftarrow Q(s,a) + \alpha \big[r + \gamma Q(s',a') - Q(s,a) \big]$ $s \leftarrow s': a \leftarrow a':$ until s is terminal

Off-Policy TD Learning: Q Learning

- The agent has two policies the behavior policy $\mu(s)$ (e.g., ϵ -greedy), and the optimized policy $\pi(s)$ (e.g., greedy)
- The next action is chosen using the <u>behavior</u> policy, but Q-values are updated using the <u>optimized</u> policy.

$$Q(s, a_{\mu}) \leftarrow Q(s, a_{\mu}) + \alpha(r + \gamma Q(s', a'_{\pi}) - Q(s, a_{\mu}))$$

• This allows us to optimize a greedy policy (as in DP methods), but we don't have to worry about exploration (due to ϵ -greedy behavior policy)

Q-Learning (TD Method)

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A) \right)$$

Initialize Q(s, a) arbitrarily Repeat (for each episode): Initialize s Repeat (for each step of episode): Choose a from s using policy derived from Q (e.g., ε -greedy) Take action a, observe r, s' $Q(s, a) \leftarrow Q(s, a) + \alpha \big[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \big]$ $s \leftarrow s'$: until s is terminal

SARSA vs Q-Learning

Initialize $Q(s, a)$ arbitrarily	Initialize $Q(s, a)$ arbitrarily
Repeat (for each episode):	Repeat (for each episode):
Initialize s	Initialize s
Choose a from s using policy derived from Q (e.g., ε -greedy)	Repeat (for each step of episode):
Repeat (for each step of episode):	Choose a from s using policy derived from Q (e.g., ε -greedy)
Take action a , observe r, s'	Take action a , observe r , s'
Choose a' from s' using policy derived from Q (e.g., ε -greedy)	$O(s, a) \leftarrow O(s, a) + \alpha [r + \gamma \max_{s'} O(s', a') - O(s, a)]$
$Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma Q(s',a') - Q(s,a)]$	$e_{(3,u)} = e_{(3,u)} + u_{[1+1]} + max_{a'} e_{(3,u)} - e_{(3,u)}$
$s \leftarrow s; a \leftarrow a;$	oto,
until s is terminal	until s is terminal

	Action Selection Policy (Behaviour Policy)	Target Generation Policy
 On Policy	ϵ - greedy	ϵ - greedy
Off Policy	ϵ - greedy	Greedy - no chance of random action selection

Approximate Solution Methods

- So far we have just looked at tabular solution methods What if your state space is too large for tables, or continuous? $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$
- Use function approximation
 - eg. linear combination of features, neural network, etc.

Approximate Solution Methods: Neural Networks

Approximate Solution Methods: Neural Networks

Mnih et al. (2015) Nature

An Example We Won't Get Into

The Actor Critic Network

- Learn policy and value with same network
 - $\mathscr{L} = (R V)\nabla_{W_u} \log \pi + (R V)^2$ Actor Loss Critic Loss

An Example We Won't Get Into

Zhao et al. (2018) Cog. Computation

More Materials on RL Fundamentals

Rich Sutton

David Silver

<u>Algorithms for RL - Csaba Szepesvari</u>

Arthur Juliani @ Medium