A Gentle® Introduction to
Reinforcement Learning

Annik Carson
ISICNI12022

*ideally

Learning from Trial and Error

SURINAME 11,909km B8 40%
RUSSIA 3,981km 0 80%
EGYPT 2,991km (2] 85%

Country, territory...

GUESS

https://worldle.teuteuf.fr/

Tutorial Goals

1. Reinforcement learning is learning from trial-and-error

2. Game Architect or Game Player: What Goes Into a RL problem
Markov Decision Processes
Environments
Agents

3. (Some) Approaches to Solving RL Problems
Types of agents
Tabular Solutions
Approximate Solutions (just some hints)

What is Reinforcement Learning?

?
What s RL Used For:

74.00K
;}‘bdA(JOK
537.68K
1.10m
2.87m
20.80p
1.678
19.22p4
12,120
4.70Mm

We All Have This Problem

“What should | do?”

Should You Go to Graduate School?

Is i+ absolutely 1007, required £or your career goal?

/Yes. No what caregr

gom?
Did you get l

into a program Will +he degree help you

Hhat you will 2arn more and
nnso\iuﬂ\g e able re ond/or advance

1o poy badk with YU Your career opportunities?

futuire expecked salarg?
/ J,n | +hink so Probably
+
Gosend, L "
Yes L come tmails N
Hav

e you +alked to at
| didwte least 3 \egit people in
inkde e industry (not o4 he — NO

do that grad cchosl) +hat can Are you Hhinki
; validate that? \ ’ e

ONLY if you v of going 4o grad
— [understand that School just be cause
you're 4aking uriik— Yes ‘/ you dont know
and pledge nod 40 g Yo d
"‘“".‘P"“"“”"V """“;r J m?bc) wﬁ’i’h’fg‘:w der
e You gedi
(a Sr}mlmaif :‘,ﬂ Mav;\jmi L
id 4o do He nsidered o
No / ”pngvun? (o schoel?)
KiIDDING: No, | just
No \ \ veally |ove
Nes Ve Yes \earning!
K can you afford v
+o poy for Hhe will the het benefit

program and Jor outweigh the
Student loans i bpportunity cost of,
your income doesnt dotng #he progran’
increase aftey v
qraduating’
Yes No

moneysideofife.com

How Does RL Relate to Neuroscience?

lvan Pavlov
Classical conditioning is the process of learning to predict the world around you

1. Before conditioning

e
response

Food

Unconditioned
stimulus

Salivation

Unconditioned
response

2. Before conditioning

R —

response

Whistle

Neutral
stimulus

No salivation

No conditioned
response

3. During conditioning

Whistle Food

Salivation

Unconditioned
response

4. After conditioning

response
Whistle

Conditioned
stimulus

Salivation

Conditioned
response

How Does RL Relate to Neuroscience?
/Loudspeaker
~Lights .

"""" 1\;

' Response lever

Food dispenser Elgctrlfled
grid

BF Skinner

Operant conditioning is the process of learning how to control behaviour for the best outcome
S

Reinforcement Learning = Optimizing Behaviour

How should agents act optimally?

(@)

Optimality ~ maximizing cumulative reward

What information is available to learn with?

(@)

Trial and error interaction with the world

r@:*

Y
L.oo_

Reinforcement Learning = Optimizing Behaviour

!ﬁ

N

David Silver, 2015

e How should agents act optimally?
o Optimality ~ maximizing cumulative reward

e What information is available to learn with?
o Trial and error interaction with the world

How do we represent these tasks
and their solutions?

Markov Decision Processes]~

e RL problems are formalized as Markov Decision Processes
o The Markov property states that

[k T

the future is independent of the past given the present: Y
o) —
Prlsii1]s1, ..y 8t] = Prlsiq1]se]

Markov Decision Processes]~

e RL problems are formalized as Markov Decision Processes
o The Markov property states that

the future is independent of the past given the present: Y
o) —
Prlsii1]s1, ..y 8t] = Prlsiq1]se]

| Reward A
|‘_|._L._- e

e MDPs are defined by the following variables:
o &, afinite set of states

o A, a finite set of actions

o P, state transition probabilities
a /
P, = Pr[Sip1 = s'|Sy = s, Ay = d
o R, a reward function: (state, action, next state) — scalar value

RE, = IE[rt+1|St = S,St+1 = S’, Ay = a]

S8

oy € [O, 1], a discount factor (weighing importance of immediate vs future reward)

Markov Decision Processes]~

e RL problems are formalized as Markov Decision Processes
o The Markov property states that

the future is independent of the past given the present: Y
o) —
Pr[sii1]s1, .., 8t] = Prsit1]si]

| Reward A
|‘_|._L.; TorTe

e MDPs are defined by the following variables:

@ S, a finite set of states

O A, a finite set of actions

X = {Jl’l,ll?g,lljg . ZBn}

o P, state transition probabilities
P, =Pr[Sii1 =85S =5,4; =a -
s =PrlSe =15 =54 =a P = {p1,p2,P3---Pn}
o 7R, a reward function: (state, action, next state) — scalar value
Rsey HE I"t+1|5t = 5,841 =5, A = qf £ = p1x1 +p2x2 + ... + ppy

oy € [O, 1], a discount factor (weighing importance of immediate vs future reward)

Exercise 1 >

An environment is a set of states and

the rules that specify moves between them

Sleep

States

Slee

State Transitions

0
O.1ll

0.5
0'5

Sleep

[0.2 1.0
0'8 0.6
0.4

Y

current state s

o
@
k=]

I

next state s'

P;LSI = Pr[St+1 = S,|St — S,At — CL]

0.5 0.5

0.2

0.1

0.4

0.8

0.6 0.4

0.4

0.9

o

eep|

0.2

1.0

1.0

Rewards P, = Pr[Ss1 = 5|8, = 5, A, = d]

next state s'

ECECHECECRORON=]
0.5 0.5
H -1 I

0.1 0.9
)G I8
-2 -2 -2 . i
'\ / +10
\ Ry = E[Tt+1 |St = 5,511 = s’ Ay = a]
{ﬂb} SHECECECON HON-

+1 [}
-2 -2 -2 +10 +1 -1 0

0.8 0.2

0.6 0.4

1.0

0.2 0.4 0.4

current state s
OOOOD

o
k=]

Actions & Transitions @, = Pr[Syyy = 8|S, = 5, Ay = df

next state s'

g’ th\\\\\
chill Lok .

€)

. 0.8 0.2

:% 0.6 0.4

@ "Iass "Iass” 0 5 @ 3 1.0
C
’\ / g 02 04 04
ol © 0.1 0.9

1.0

next state s'

Study i — N

1.0

1.0

0.5 0.5

0.7 0.3

1.0

1.0

@)
5
@)
5
@)
&
&
current state s
BCEOOO®

Markov Decision Processes

° S,

° A,

o P,

o R,

o fite setofsates

a finite set of actions Study, Chill

state transition probabilities (one matrix for each action) \

a reward function: (state, action, next state) — scalar value . ‘ ‘ ‘ . '

I:Z -2

Sleep|

® v € [0, 1], adiscount factor (weighing importance of immediate vs future reward)

Sleep|

Returns

e The return (aka Gain, hence G)) is the total discounted reward from step t:

o
2 k
G, = el + Y2 Y T3+ = E :’Y Tt4+k+1
k=0

e Why discount?
o Rewards in the future may not be as valuable as rewards now

o 7 € [0,1] controls our ‘temporal horizon”:
m 7 =0: the only reward we care about is NOW (most ‘nearsighted’)
m 7 =1: all rewards (to infinity) have equal value (most ‘farsighted’)

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved
’U(S) = E[Gt|St — S]
g (8,a) = E;[G|S; = s, Ay = a

X = {561,5172,2133 . ZBn}

P ={p1,p2,03-..Pn}
£ = p1x1 +p2x2 + ...+ prxy

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved
’U(S) = E[Gt|5t — 8]
g (8,a) = E;[G|S; = s, Ay = a

A policy (1) is a distribution over actions given states
wla|s] = Pr[A; = a|S; = $]

BREAK

How do we represent these tasks
and their solutions?

Specifying the Environment

Obstacle states

An environment is a set of states and

the rules that specify moves between them

Exercise 2 >

Environment

State Ex. (1,1), (5,5)

Action Ex.“Down”

Reward Ex. -1 or +10

Obstacle states

Terminal state

_

Grid World

Environment: Rewards

Reward function R(state)

- R(1,1)=-1

- R(5,5)=+10

R(s) for this environment can be
represented by a vector:

Terminal state

|/

-1 -1 -1 1 +10

Q: How long is the vector R(s)?

Grid World

Environment: State Transition Probability

Transition Function P(s, s/, a):
A rule for what moves are allowed

— Can be represented by a 3D tensor

:

Terminal state

|/

W | 3| W | \O |-

e Grid World

w
(@)} [\e] O W (V)] w
(@)} o0 O W [\ BN
N ~ (OS] oo (@) —
N
|~ o
o1
S

2

oooooo f dimensions [6] tensor of dimensions [6.4] tensor of dimensions [4.4.2]
(vector of dimension 6) (matrix 6 by 4)

Environment: State Transition Probability

Transition Function P(s, s/, a):
A rule for what moves are allowed

— Can be represented by a 3D tensor
Down
Up

| Left

Right
2 511010 0 _
2 §2 00 1 0 Terminal state
= /
d
s ‘ , .
O s25(0 0 O 0 — Grid World

S1S2 S3 ... 525

Next state (s’)

Environment: State Transition Probability

Transition Function P(s, s/, a):

A rule for what moves are allowed P
; 1 2 3 4 5
\1“. 2 |3 |4 |5
216 |7 |8 |9 |10
For state 1 (i.e. (1,1)): | |
(e. (1,1) 3111 |12
] S1 S2 S3 S4 S5 S6 ...S25 A Al 1>
own s s B L it B s e oy O
W1z, 0.; 8., 0.; 8., 05; : |
Left |l 0., 0., 51121 | 22 25
Right 0

Grid World

Environment: State Transition Probability

A different transition function:

Environment has wrapping edges

ex. pacman \1*'. 2 |3 |4 |5

For state 1 (i.e. (1,1)):

S1 S2 S3 S4 S5 S6 ...S25

20 | Terminal state

24 |I98 ,,/

Grid World

There should be a 1 in the matrix at position [1, 20]
i.e. for action up the probability of transitioning to
state 21 is 1

Environment: State Transition Probability

A different transition function:

Environment has a strong wind blowing
. \%
to the right i@ 2 [3 |4 |5

For state 1 (Ie (1 11)) 3 11 12 Obstaglg states

4 | 16 | 17 20 | Terminal state
Down /
Up i
Left 5 (21|22 |23 |24 |B28 «/
Right

Grid World

The probability of leaving astate =1
— Sum of values along therow = 1

Markov Decision Processes

° S,

° A,

o P,

o R,

® " cC [O, 1] , a discount factor (weighing importance of immediate vs future reward)

a finite set of states {(0,0), (0,1), (0,2), ... (5,5)}

a finite set of actions

{Up, Down, Left, Right}

state transition probabilities (one matrix for each action)

7

a reward function: (state, action, next state) — scalar value

Obstacle st

ates

What is Reinforcement Learning (RL)?

How should agents act optimally?

(@)

Optimality ~ maximizing cumulative reward

What information is available to learn with?

(@)

Trial and error interaction with the world

So far, we have just set up a formalized task

(@)

How do we go about solving it?

r@:*

Y
L.oo_

BREAK

How do we represent these tasks
and their solutions?

Specifying the Agent

What’s In An Agent?

An agent is made up of one or more of these pieces:

OO0

What’s In An Agent?

An agent is made up of one or more of these pieces:

e Model

o Arepresentation of the environment dynamics

Model T = Pass,

What’s In An Agent?

An agent is made up of one or more of these pieces: Value = E(G)
e Model
o Arepresentation of the environment dynamics >
e Value Function Model T = P?_, '
o An estimate how much reward is expected i

over time for each state and/or action

What’s In An Agent?

An agent is made up of one or more of these pieces: Value = E(G)
e Model
o Arepresentation of the environment dynamics > Policy it
e Value Function Model T = P?_, ' s
o An estimate how much reward is expected ~ 5
over time for each state and/or action §o

e Policy
o Afunction which maps states onto actions
o A(conditional) probability distribution
m gives the probability of selecting
each action given current state

What’s In An Agent?

An agent is made up of one or more of these pieces:

e Model

o Arepresentation of the environment dynamics

e Value Function

o An estimate how much reward is expected
over time for each state and/or action

e Policy
o Afunction which maps states onto actions
o A(conditional) probability distribution
m gives the probability of selecting
each action given current state

Value Function

David Silver, 2015

How to Learn Intelligent Behaviour?

e Trial and error learning

e Traditional RL categorized as -

o Model-based (~ goal directed) 4
o Model-free (~ habitual)
oOO0) —

Model /5 e Policy

45

How to Learn Intelligent Behaviour?

e Trial and error learning

e Traditional RL categorized as —

o Model-based (~ goal directed) >
o Model-free (~ habitual)
oOO0) —

Model /,, Policy

46

How to Learn Intelligent Behaviour?

e Trial and error learning

e Traditional RL categorized as —

o Model-based (~ goal directed) >
o Model-free (~ habitual)
oOO0) —

47

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved

v(s) = E[Gy|S; = ¢]

Recall: [= pix1 +poxo+ ...+ prxn

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved
v(s) = E[G¢| Sy = s]

A policy (1) is a distribution over actions given states

wla|s] = Pr[A; = a|S; = $]

Value & Policy Functions

The value of a state s is the expected long term reward that can be achieved
Vr(s) = Ex[Gt|S: = s]

A policy (1) is a distribution over actions given states
wla|s] = Pr[A; = a|S; = $]
Ex. Greedy policy: Ex. E-Greedy policy:
7(s) = argmax ¢, (s, a) s {e/m +1—¢ ifa=argmax ¢(s,a)
Tla|s| =

aeA acA
e/m otherwise

How to Compute Value of Current State?

e Brute force

o Compute value of all possible traces and take U (8)
weighted sum O
pas = IE = = R =
ve(s) =EB[Gi|Sy = s] = > pl7|m, Si = 5)G(7)
TeMDP

How to Compute Value of Current State?

e Brute force

o Compute value of all possible traces and take U (8)
weighted sum O
vr(s) = E[G¢| Sy = 8] = Z p(7|m, Sy = s)G(T)
rEMDP G, M G 2 - 2
e Sampling 2 G,
O Pick traces randomly and take empirical 0 O oonDooQonnoaoodo

average over sampled traces

vw(8)=%§:G(n) ""

How to Compute Value of Current State?

e Brute force

o Compute value of all possible traces and take U (8)
weighted sum O
vr(s) = E[G¢| Sy = 8] = Z p(7|m, Sy = s)G(T) . A . X
TeMDP
e Sampling
o Pick traces randomly and take empirical 0 O O 00O QQUuoQooo

average over sampled traces

ve(s) = % > 6n)

e Bootstrapping
o Estimate from values of successive states
Vr(8) = Ex[Ris1 + YRivo + ...|St = 9]
= Ex[Ri+1 + Y0r(St41)[St = 8]

Using Value to Construct Policy

e How do we judge value?
o The state-value function v_(s) is the expected return
starting from state s and following policy 1t thereafter

Vr(s) = Ex |G| Sy = s]

o The state-action-value function q_(s,a) is the

expected return starting from state s, taking qr(s,a) = E;[G¢|S; = s, Ay = a
action a, then following policy 7t thereafter

e Some policies based on these value functions:

greedy: 7(s) = arg max ¢ (s, a)
acA

e/m+1—e if a=argmax ¢(s,a)
mla|s] = a€A
e/m otherwise

E-greedy:

BREAK

Solution Methods

e Tabular Methods @i ‘
oo o . ‘

o Monte Carlo

o Temporal Difference %\":El A
B e e W
e Approximate solution methods

Y
o Deep Q Network (DQN)
o Policy-gradient methods O o)

o Actor-Critic

\

Model Policy

Value

56

Learning Value

Vie(st) < Vi(st) + a(

Vr(s) = Ex[G¢| Sy = 5]

Error - how much to update by

A

TARGET

New (Updated) Old Value
Value

N

— Ve(st))

Learning Rate - how much error contributes to new value

Learning Value: Monte Carlo

Vr(s) = Ex[G¢| Sy = 5]

Error - how much to update by

r

Vie(st) < Vi(sy) + oz(

G — J{/W(St))

New (Updated) Old Value
Value

|

Empirical return G, (i.e. sampled)

Learning Rate - how much error contributes to new value

Gy = Rip1 + YRz + . +7" T Rysr

1 UrlS Z]E‘,TGtStzs
Learning Value: Monte Carlo (8) = Ex[GilS: = o]

Learn directly from episodes of experience — upon episode completion, update
the value of all states (or state-actions) visited [sampling]

Gy = Rit1 +YRipo + .+ "' Reyr

e General idea: run some episodes and estimate value of a state as
empirical mean of the return starting from that state

N
1
© ve(s) = V(s) = N ZG’t(n), for Sy = s

=1
Gr,) A Glr,) R L G(t,) F
Incremental update:

T ooovoondgadnoando Vﬂ-(St)%Vw(st)%—a(Gt—VW(St))

. Vr(s) = Ex[G¢| Sy = s]
Learning Value: Monte Carlo

e Evaluation: for each episode, update the estimate of the value

Vi(se) < Va(se) + a(Ge — Vz(st))

Qr(st,at) Qr(se,a:) + (Gy — Qn(st, ar))

e Improvement: update policy to be €-greedy w.r.t value function

. evaluation
e/m+1—¢€ if a =argmax ¢(s,a) -
mlals] = a€A V-V
e/m otherwise T V

st—>greedy(V)

improvement

Learning Value: Monte Carlo

e Run through an episode making e-greedy choices, record each (s, a, r)
o Atthe end, compute V(s) or Q(s,a) explicitly
e Repeat, each time average the values of the V(s)/Q(s,a) we have so far
o This way, we know which state/action gave the highest value of anything we encountered

PROS CONS
Does not require knowledge/model of Requires episodic (terminating)
environment (learns from interaction) environments
Can focus on one region of interest Requires complete episodes, can't
without having to evaluate the rest of bootstrap (can’t estimate values of
state space successive states)
Return only known at the end of episode,
so very slow for long episodes

Exercise 3 >

Learning Value: Temporal Difference

Error - how much to update by

A

Ve

Vi(se) < Vr(st) + af

re + YV (Sta1)

\

New (Updated) Old Value
Value

|

Estimate of return Gt

N

— Ve(st))

Learning Rate - how much error contributes to new value

. . Vo(8) = E |G¢|S: = s
Learning Value: Temporal Difference "~ ™"~

Temporal difference (TD) learning combines efficient value estimation by bootstrapping
along with sampling from episodes.

v(s) =E[Gt | St = s]
=3 :Rt+1 + YRey2 + ’)’2Rt+3 + ... | = s]
=K :Rt+1 ¥ ’Y(Rt+2 + YRey3 +) | 5= 5]
= E[Rty1 +7Ge41 | St = 5]
= E[Res1 +yv(St41) | St = 9]

. . Vo(8) = E |G¢|S: = s
Learning Value: Temporal Difference "~ ™"~

Temporal difference (TD) learning combines efficient value estimation by bootstrapping
along with sampling from episodes.

v(s) = E[Res1 +yv(Se41) | St = 5]

e General idea: Update your estimate of currnet value using your estimate of the
next value plus some empirical evidence (observed reward)

o QTr(Sa a),rt_
® ® q”(s”a’ 0
Incremental update:
I oovOondQQunmomuoHo VW(St)evﬂ(st)—l—a(rt—l—q/vw(st+1)—VW(St))
|J_'| M O O 4 O o Qr (st at) < Qr(st,ar) + a(re + YQr(St41, ar41) — Qr(st, ar))

Learning Value: Temporal Difference

e Evaluation: for each episode, update the estimate of the value

VW(St) < VW(St) + Oé(’l“t + ’VVW(SH—l) o VW(St))
QW(Stv a’t) < QW(Sta at) + CY(’I“t + VQW(SH—L at-l—l) o QW(St7 a’t))

e Improvement: update policy to be e-greedy w.r.t value function*®

e/m+1—e if a=argmax q(s,a) evaluation
7r[a|3] — acA m
e/m otherwise

e vV
st—>greedy(V)

improvement

[J [] 5 s 3
Example: Driving Home ... e e

leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43
Changes Recommended by MC Changes Recommended by TD
45 -
___actual outcome ____ actual
outcome
40
351
30
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home

Temporal Difference vs Monte Carlo

Goal: learn v_ online from experiences under policy 7

Incremental MC

Simplest TD

Update V(s,) toward actual return G,

Update V(s,) toward estimated

return Rt+1 +y V(sm)

V(s) — V(s) + a (G, - V(s))

V(s) «V(s) +a (R, +v V(s

1)

-V(s))

Temporal Difference vs Monte Carlo

Goal: learn v_ online from experiences under policy 7

Monte-Carlo Backup Temporal-Difference Backup

V(St) S V(S[) + Q‘(Gt - V(s[)) V(St) — V(St) + (I(RH,] +’)’V(St,1) — V(St))

A)

1

In Between MC & TD: TD-lambda

Let TD target look n steps into the future

ID(f-step) Z:slep v fraing Lo Consider the following n-step returns for n = 1,2, co:
? ? E n=1 (TD) GM = Reyp1+7V(Se41)
E U gl) e n=2 Gt() = Ret1+YRey2 + 72 V(Se42)
i n=o00 (MC) G(m) = Riy1+YRey2+ ... +7T 1Ry

o—....

How Do All These Relate?

width

p— —
Temporal- i /O\ Dynamic
difference OA f\programming
learning O 00 O

depth

(length)
of update
Exhaustive
Mot ‘ . . search
Carlo " & a

’ . ')

2%y e Y
ey PROB S
. K -

Sutton & Barto

On/Off Policy Learning

- Generate your target from the same policy you used to select actions
- ON policy

- Generate your target from a different policy than the one you used to
select actions

- Off policy
Action Selection Policy | Target Generation Policy
(Behaviour Policy)
On Policy €- greedy € - greedy
Off Policy €- greedy Greedy - no chance of
random action selection

Exercise 4 >

Learning Value: Temporal Difference

Error - how much to update by

A
r A\

Qr(st,a1) < Qr(se,a¢) + a(re + vQr(St41, arr1)|— Qn(se,ar))

|

Estimate of return Gt

Learning Rate - how much error contributes to new value

New (Updated) Old Value
Value

On-Policy TD Learning: SARSA

e The agent collects info over two steps: State/Action/Reward/Next State/Next Action
e Agent uses an e-greedy policy for action selection in each step

e Update state (state-action) values by this temporal difference error which takes into
account the states/actions sampled in step t and step t+1

QW(Stv a’t) — QW(Sta at) + CY(’I“t + VQW(St—l—la at—l—l) o QW(St7 a’t))

SA

SARSA (TD Method) :

Q(S.A) « Q(5.A) +a (R ++Q(S, A') - Q(S. A))

Initialize Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s‘" using policy derived from @ (e.g.. s-greedy)
Q(s.0) — Q(s.0) +alr +9Q(s,a") = Q(s.a)
§+— 8 a—a;
until s is terminal

Off-Policy TD Learning: Q Learning

e The agent has two policies — the behavior policy u(s) (e.g., e-greedy), and the
optimized policy =(s) (e.g., greedy)

e The next action is chosen using the behavior policy, but Q-values are updated using
the optimized policy.

Q(s,a,) + Q(s,a,) +a(r+Q(s',al) — Q(s,a,))

e This allows us to optimize a greedy policy (as in DP methods), but we don't have to
worry about exploration (due to e-greedy behavior policy)

Q-Learning (TD Method)

Q(S.A) « Q(S5,A)+ a (R +7 max Q(S',a) - Q(S,A))

Initialize Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g.. e-greedy)
Take action a, observe r, s’
Q(s.a) — Q(s,a) +a [r + v max, Q(s',a’) — Q(s, a.)]
s — s
until s is terminal

SARSA vs Q-Learning

Initialize Q(s,a) arbitrarily Initialize Q(s.a) arbitrarily
Repeat (for each episode): Repeat (for each episode):

Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):

Take action a, observe r, s’

Choose a' from s’ using policy derived from Q (e.g.. e-greedy)

Initialize s

Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g.. e-greedy)
Take action a, observe r, s

Q(s.a) — Q(s,a) + a[r + vQ(s',a') — Q(s,a)] Q(s.a) — Q(s,a) + a[r + ymaxy Q(s',a') — Q(s,a)]
s—sia—a; - s — s
until s is terminal until s is terminal

Action Selection Policy | Target Generation Policy
(Behaviour Policy)

—— On Policy €- greedy € - greedy

Off Policy €- greedy Greedy - no chance of
random action selection

e So far we have just looked at tabular solution methods
What if your state space is too large for tables, or continuous?
q(s,a,w) = qr(s,a)
e Use function approximation
o eg. linear combination of features, neural network, etc.

Approximate Solution Methods: Neural Networks

Simple Neural Network Deep Learning Neural Network

i ot

0.5 j
¥ {

7 N
% PN P
oS

AN
Rl P
\ézi.f,g.-{j
M) .
Fat'a s, “\P' v'l.-},:r‘»‘ l“')/' {\f,’.'a".‘ '\ o) %) ::._\ e
3 o) AN Vg e A I
N\ @\ e 5N
N A LSRN A
N

@ nput Layer () Hidden Layer @ Output Layer

Approximate Solution Methods: Neural Networks

a D Q N 17} Convglution Convgluﬂon Fully connected
|

] g B
“ /il . |/ EI A\
- »f] @ B °—El Q =) Q
_DE] E g D v/
\] K} *,:‘EI

&

m

NEAAANE !g‘ g
t : ¢ ' * <« v ed |3

il““il"l“"ﬂla :

Mnih et al. (2015) Nature

An Example We Won't Get Into

The Actor Critic Network

- Learn policy and value with same network

Z =R —-V)Vylogn+(R~—V)>
1\ J J
Y Y

Actor Loss Critic Loss

An Example We Won't Get Into

A B
Environment = Environment =
o)
= reward §. reward "é
m e
w Critic c 2 Critic Eg ——
o || 1 | A | s
| - g .i 1~ 3 '§ SNc g
A x : =
e g dopamine S
; E :
> 2
: : T
>< c w
Bl g =
» ©
Actor (@ Actor- Basal
Critic Ganglia

Zhao et al. (2018) Cog. Computation

More Materials on RL Fundamentals

http://www.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www.incompleteideas.net/book/bookdraft2017nov5.pdf
http://www.incompleteideas.net/book/bookdraft2017nov5.pdf
https://medium.com/@awjuliani
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs-lecture.pdf

